Optical effects of pure spin currents Ren-Bao Liu (刘仁保)

rbliu@phy.cuhk.edu.hk

Department of Physics, The Chinese University of Hong Kong

Collaborators: Jing Wang, Sheng-Nan Ji, Bang-fen Zhu (Tsinghua University, Beijing)

Outline:

- Motivation
- Linear optics: Faraday rotation w/o net magnetization
- 2nd order nonlinear optics

Supported by Hong Kong RGC HKU 10/CRF/08, Hong Kong GRF CUHK 402207, the NSFC Grant Nos. 10774086, 10574076 and the Basic Research Program of China Grant No. 2006CB921500

Pure spin current: Opposite spins go opposite

Information carriers in spintronics

Spin Hall effect (PSC in the bulk)

Y. K. Kato et al, Science **306**, 1910 (04)

Topological insulator (PSC at edges)

Kane & Mele, PRL 95, 226801 (2005)

Motivation: How to measure PSC where & while it flows?

Smoking guns:

Spins accumulate at stopping edges:

Y. K. Kato et al, Science 306, 1910 (04);
J. Wunderlich et al, Phys. Rev. Lett. 94, 047204 (05);
H. Zhao et al, Phys. Rev. Lett. 96, 246601 (06);

Converted to electrical signals:

S. O. Valenzuela & M. Tinkham, Nature 442,176 (06);
X. D. Cui et al, Appl. Phys. Lett. 90, 242115 (07);
S. D. Ganichev et al, Phys. Rev. B 75, 155317 (07);

. . .

No charge current, no magnetization, no direct EM induction. How to see it where and while it flows?

Q: Can we directly measure a pure spin current?

Rule of thumb: Currents breaking the same symmetries are coupled

A pure spin current can be formulated as a rank-2 tensor

$$\mathbb{J} = \mathbf{J}\mathbf{Z}_{\mathbf{z}}$$

J : spin polarization

 \mathbf{Z} : current flowing direction

Spin is a pseudo-vector

Broken & unbroken symmetries:

- 1. Time-reversal symmetry kept (T)
- 2. Space inversion broken (P)
- 3. Rotational symmetry broken (R)

A clue: Ampere & Orsted effects

A "pure "charge current made of two counter-propagating currents of the same amplitude but opposite charges: The charge density is neutral everywhere, any effect?

A point charge at rest can not "see" a pure charge current (for it does not break the T-symmetry).

But a moving charge does (it is of the same symmetry-breaking type as the current).

So we have the Ampere effect (current-current coupling) and the Orsted effect (magnet is a small current loop)

What would be the probe of a pure spin current?

It should be a current of the same symmetry breaking type (in jargon: of the same tensor type).

An obvious solution is to use another spin current.

But we don't want to use another spin current. (Otherwise, how to measure the probe?)

For a solution, we just need shed a little light.

Yes, we just need a little light

A photon has two polarization states. Jones vector representation:

The photon polarization is a pseudo vector, the same as a spin.

A polarized light beam is a "photon spin current" (a pure one is the energy current is not counted).

In tensor formalism:
$$\mathbf{I} \equiv q \mathbf{I} \mathbf{Z}$$

- **I** : photon "spin" polarization
- **z** : light beam direction
- **q**: light wavevector

Symmetry Analysis

Suppose the system has P&T

Coupling in the 0th order of q:

 $H_{\rm eff}^{(0)} \propto I_z \mathbf{z} \cdot \mathbf{S}$, i.e., Faraday rotation in magnetooptics

Coupling in the 1st order of q:

 $H_{\rm eff}^{(1)} \propto I_z \mathbf{qz} : \mathcal{J}, \quad \text{i.e., circular birefringence w/o T-breaking}$

Symmetry Analysis (II) Consider a specific form of spin current $\mathcal{J} \propto J_x \mathbf{XZ} + J_y \mathbf{YZ} + J_z \mathbf{ZZ} = \mathbf{JZ}$

Under reflection about z-Z plane:

So: $H_{\text{eff}}^{(1)} = AqI_zJ_Z + BqI_zJ_Z = aqI_zJ_Z + b\mathbf{Z}\cdot \mathbf{J}\cdot \mathbf{Z}$

Only two coupling constants left undetermined.

J. Wang, SN Ji, BF Zhu, & RBL (unpublished)

Microscopic model: Bulk III-V compound (like GaAs)

Spin current by a quasi-static nonequilibrium distribution slightly different from a Fermi surface.

- 1. Spin-orbital coupling needed for coupling light E-field and electron spin;
- 2. SO coupling in valence bands (relativity effect);
- No Rashba effect in CB & Dresselhaus effect is negligible (spin splitting ~ 0.01 meV for doping ~10¹⁶ cm⁻³ in GaAs);
- 4. The light is tuned below Fermi surface (no real excitation);
- 5. Current-current coupling by virtual absorption & emission;
- 6. Virtual processes \rightarrow phaseshift.

What are the physical effects?

Linear susceptibility:

$$\chi_{\sigma,\sigma'} + \chi^*_{\sigma',\sigma} = \frac{1}{\epsilon_0} \frac{\partial^2 \mathcal{H}_{\text{eff}}}{\partial F^*_{\sigma} \partial F_{\sigma'}}$$

Optical field of certain polarization

$$\mathcal{H}_{\text{eff}}^{(1)} = \zeta_2 q I_z \mathbf{z} \cdot \mathbb{J} \cdot \mathbf{z} + \zeta_3 q I_z J_Z$$

$$I_{Z} = F_{+}^{*}F_{+} - F_{-}^{*}F_{-}$$

Birefringence for circular polarizations

$$\chi_{++} = -\chi_{--} = \frac{q}{4\epsilon_0} \left(\zeta_2 \mathbf{z} \cdot \mathbb{J} \cdot \mathbf{z} + \zeta_3 J_Z\right)$$

Similar to the Faraday rotation in magneto-optics. But no net magnetization here.

Why not seen before?

Y. K. Kato et al, Science **306**, 1910 (04).

<u>Normal incidence: Symmetry → no coupling</u>

check reflection by surface plane Solution: Observation by oblique light

How big would be the effects?

The Faraday rotation angle

$$\theta_F \propto \frac{\cos \beta' \sin \beta' \cos \gamma}{\left|\cos \beta'\right|}$$

$$= \pm \theta_{F,0} \sin \beta \sin \gamma$$

Sign flip at reflection.

For a spin current 20 (nA μ m⁻²).

Maximum values: $\theta_{F,0} \approx 0.4 \ \mu rad$

reached when $\beta \rightarrow \pi/2$ and $\gamma \rightarrow 0$

J. Wang, B. F. Zhu, & RBL, Phys. Rev. Lett. 100, 086603 (2008).

Linear optical effect depends on the small light wave vector q, and therefore is small

 $\theta_F^{(1)} \sim q$ $\theta_{F,0} \approx 0.4 \ \mu \text{rad for a spin current } 20 \ \text{A}/\mu \text{m}^{-2}$

$\mathbf{q} \cdot \mathbf{v} \Longrightarrow \mathbf{E} \cdot \mathbf{V}$?

That means 2nd order nonlinear optics

Chiral sum-frequency spectroscopy of chiral molecules

In linear optics, only magnetic dipole contributes: Signal depending on the small light wavevector q.

Chiral sum-frequency in chiral systems

Longitudinal spin current is chiral

The mirror image is cannot be made the same as the original object by translation and rotation \rightarrow Chiral quantity

General case: symmetry analysis

In general, a spin current breaks inversion symmetry,

$$\mathcal{I} = \mathbf{s}\mathbf{v} \rightarrow (\mathbf{s})(-\mathbf{v})$$

→ nonzero 2nd-order nonlinear optical effect

$$\mathbf{P}(\omega_1 + \omega_2) = \chi^{(2)} : \mathbf{F}_1(\omega_1)\mathbf{F}_2(\omega_2)$$

Longitudinal part: $\mathcal{J} = J_Z \mathbf{Z} \mathbf{Z}$

$$\chi_L^{(2)} = J_Z \Big[\alpha_1 \big(\mathbf{ZXY} - \mathbf{ZYX} \big) + \alpha_2 \big(\mathbf{YZX} - \mathbf{XZY} \big) + \alpha_3 \big(\mathbf{XYZ} - \mathbf{YXZ} \big) \Big]$$

Only 3 free parameters to be determined (all chiral terms).

Transverse part: $\mathcal{J} = J_X \mathbf{XZ}$

$$\chi_T^{(2)} = J_X \left[x_1 \mathbf{X} \mathbf{X} \mathbf{Y} + x_2 \mathbf{X} \mathbf{Y} \mathbf{X} + x_3 \mathbf{Y} \mathbf{X} \mathbf{X} + z_1 \mathbf{Z} \mathbf{Z} \mathbf{Y} + z_2 \mathbf{Z} \mathbf{Y} \mathbf{Z} + z_3 \mathbf{Y} \mathbf{Z} \mathbf{Z} + y \mathbf{Y} \mathbf{Y} \mathbf{Y} \right],$$

Seven free parameters to be determined.

Standard (though lengthy) perturbation method

Microscopic mechanism in short

Consider one electron with spin S and velocity V.

Spin current due to this electron is SV.

Microscopically calculated sum-frequency spectra

How big could be the effect?

- 1. Proportional to current amplitude
- 2. Depending on detuning

inputs @ 800 nm and 30μ m wavelenths (i.e., double resonance condition) $10 \text{ nA}/\mu\text{m}^{-2}$ spin current GaAs

$$\chi^{(2)} \sim 10^{-6} \text{ esu} \sim 3 \times 10^{-9} \text{ cm/V}$$

J. Wang, B. F. Zhu, & RBL, arXiv 1001.1053 (2010).

Summary

- Spin current has peculiar symmetry breaking: It can be detected by a probe breaking the same symmetry
- 2. Linear optics: Circular birefringence without breaking T (but depending on small *q*)
- 3. Nonlinear optics: Strong chiral & normal sumfrequency susceptibility
- 4. Optical spectroscopy as a toolbox for studying spintronics & topological insulators